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Abstract. A study of the distribution of conductances, P (g), for quasi-one-dimensional (multichain) pseu-
dorandom systems is here presented. We focus on the crossover between the metallic (〈g〉 � 1) and the
insulating (〈g〉 ∼ 0) regimes with reference to the case of “cosine” and “tangent” pseudorandom poten-
tials. The results are compared with those obtained for the truly random disordered systems with the same
geometry. A rich variety of shapes of P (g) is thus evidenced in the crossover-transport regime and, in the
case of identical interacting chains composing the device, we have shown that the conductance distribution
of the system can be obtained from the results for the single pseudorandom chain.

PACS. 71.30.+h Metal-insulator transitions and other electronic transitions – 72.15.Rn Localization effects
(Anderson or weak localization)

1 Introduction

Due to the random distribution of the scattering centers,
the conductance g of quasi-1D disordered systems shows
fluctuations from sample to sample, as it was discovered
experimentally [1] and then confirmed theoretically [2–4].
These fluctuations, induced by quantum interference ef-
fects, may become independent of sample size and de-
gree of disorder giving origin to the concept of Universal
Conduction Fluctuations [3]. Therefore g is not a self-
averaging quantity, i.e. it does not converge towards its
ensemble average as a function of sample size; the most rel-
evant information on charge transport is in general given
by the statistical distribution of its values [5], which has
been recently object of deep interest both in one dimen-
sional [6,7] and in quasi-one dimensional systems [8–10].

Two fundamental regimes with typical corresponding
distributions, P (g), have been individuated for disordered
quantum wires: the metallic regime, with ξ � L and
〈g〉 > 1 (ξ is the localization length of the electronic states,
L is the typical length of the system) and the insulating
regime, with ξ � L and 〈g〉 � 1. In the former case P (g)
is a Gaussian function with log-normal tails [11,12], in
the latter case P (g) is reproduced by a log-normal func-
tion [13].

More recently, beyond these two situations, an inter-
mediate crossover regime has been object of deep interest:
in fact the transition of P (g) from the log-normal shape
to the Gaussian one is far from being smooth, as it was
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demonstrated for disordered wires both in the absence and
in the presence of time reversal symmetry [9,10], and for
quasi-1D systems with corrugated surfaces [14].

In the tight binding scheme a disordered quantum wire
is described, following the approach introduced by Ander-
son [15], by assigning random values to the site energies
(or to the hopping interactions) of the Hamiltonian of the
system. Quasi one dimensional (multichains) tight bind-
ing models with random diagonal or off-diagonal potential
have been adopted as efficient tools to verify the extensi-
bility to higher dimensions of the definitions and of the
exact results obtained for strictly one dimensional disor-
dered systems.

Beyond truly random values, other (deterministic)
forms of aperiodicity have been introduced and studied
with this method. Among them, a special interest has been
devoted to incommensurate lattices [16–19], obtained as-
signing to the sites energies of the perfect crystal a peri-
odic function with period incommensurate with respect to
the lattice constant. The resulting configuration for such
lattices has to be considered as intermediate between the
ordered and the disordered ones.

By means of appropriate choices of the modulat-
ing potential functions, also pseudorandom sequences, i.e.
neither periodic nor incommensurate, can be generated.
These sequences are described by well defined functions
of position (see e. g. Eqs. (3) and (4) below); their spec-
tral properties in the strictly one dimensional case have
shown interesting analogies and differences with respect
to the corresponding random models mainly concerning
the localization properties [20–26]. While pseudorandom
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potentials in strictly 1-D chains have been widely studied
in connection with the physics of chaos [21–23], for their
localization properties [24,25] and for the effect of the de-
gree of pseudorandomness [26], to our knowledge no effort
has been devoted to the study of the statistical properties
of conductance in quasi one dimensional pseudorandom
wires. In this paper we evaluate numerically the distribu-
tion of conductance, in the crossover between the metallic
and the insulating regimes, in quantum wires where the
lattice site energies are modulated by the two most widely
studied pseudorandom potentials: the cosine and the tan-
gent potentials. Our aim is to highlight the comparison of
their spectral properties with the corresponding results of
the truly random multichain system. Moreover, we show
that if the coupled chains composing the system are iden-
tical, then the total distribution of conductances can be
interpreted in terms of the results of the single chain.

The numerical approach we exploit is based on the
tight binding Green’s function formalism for the evalua-
tion of the conductance [27,28] of the quantum wire. We
adopt a lattice model for the system Hamiltonian and the
real-space renormalization procedure to reduce to man-
ageable size the system composed by infinite (left and
right) leads.

The paper is organized as follows: in Section 2 we de-
scribe the system and the theoretical methods adopted for
the evaluation of conductances. Section 3 contains the re-
sults for the conductance distributions of pseudorandom
quantum wires in the crossover between metallic and in-
sulating regimes. Section 4 contains the conclusions.

2 Method and system details

Let the overall system composed by seminfinite (left and
right) leads and a central wire be described by a square
lattice. The quasi 1D structure under study can be rep-
resented by a strip of interacting chains with one 1s or-
bital localized on each site. The Hamiltonian has the form
H = HL + HR + HD where HL and HR are the leads
Hamiltonians:

HL(R) =
∑

i,j

ε
L(R)
ij |φi〉〈φj | (1)

with εii=εi=0 and εij = t if i �= j nearest neighbors,
εij = 0 elsewhere; HD is the device Hamiltonian

HD =
∑

i

εi|φi〉〈φi| +
∑

i�=j

tij |φi〉〈φj | , (2)

|φi〉 denotes the s-like orbital centered on the site i=(n, α),
the index n labels the sites along the chains and α refers to
the chain number; εi are the site energies and tij the hop-
ping interactions between the sites. We limit here to first
neighbour interactions and indicate with t‖ = tnα,n±1α

and t⊥ = tnα,nα±1 the intrachain and interchain interac-
tions, respectively; moreover we fix t‖ = t⊥ = t (which is
chosen as energy unit) both in the leads and in the device.

The site energies of the leads are chosen equal to zero and
the site energies for each chain in the device are assigned
according to the following pseudorandom potentials:

Vn = W cos(2πηnν) (3)

and
Vn = W tan(2πηn2) . (4)

In expressions (3) and (4) η is an irrational number and
ν >1. When we operate in the truly pseudorandom poten-
tial regime, we fix conventionally the origin of the device
at the site n = 105; moreover to have different configura-
tions for different chains we assign the site energies εnα

shifting the site index n in the forms (3) and (4) by 105

sites for each chain, for different α label. The irrational
number η, which is irrelevant in the pseudorandom case
we are considering, is fixed by the relation 2πη=1.1.

The main difference between expressions (3) and (4)
resides in the fact that in the former case the pseudo-
randomness is due to the rapid oscillation of the modula-
tion [25], while in the latter this behavior is also enriched
by the unboundness of the function which determines very
strong fluctuations in the amplitude of site energies. In the
cosine potential (3) the degree of pseudo-randomness is
driven by the parameter ν [24]: for 1 < ν < 2 the localiza-
tion of the electronic states is weak and the presence of a
single delocalized state has been predicted at E = 0 [25];
for ν > 2 the localization is complete and, for ν > 3,
tests for randomness used in computer science have given
results undistinguishable to a random sequence [26].

The tangent potential (4) has been often studied in
connection with the periodically kicked quantum rotor
problem [21–23]. When it is assigned to the sites of a 1D
chain, the resulting lattice presents the same localization
properties as the Lloyd model [29], where the random site
energies are distributed according to the Cauchy distribu-
tion; moreover, the Lloyd and the tangent models show
the same analytic energy dependence of the Lyapunov co-
efficient [30].

The calculation of the conductances of the multichain
wires has been performed by means of the Keldysh-Green
function theory used in quantum transport [27,28]; the
great advantage of this approach is the possibility to eval-
uate the space and energy distribution of the steady state
currents that flow in a device biased at different chemical
potentials, by means of standard retarded Green’s func-
tions. Moreover, the effect of the leads and of external
perturbations are easily inserted in the procedure. The
conductance at the chemical potential µ (µL ∼ µR ∼ µ)
has the form [31]:

g(µ) =
2e2

h
Tr{Γ (left)

11 (µ) GR
1M (µ) Γ

(right)
MM (µ) GA

M1(µ)} .

(5)
where 1 and M are border column sites of the device. The
linewidth matrices Γ are given by

Γ
(left)
11 = i t10(gR

00 − gA
00)t01 , (6)
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Fig. 1. Average conductance as a function of the Fermi energy
of three interacting chains of length L=30. Site energies along
the chains are assigned according the cosine potential (3) with
W=0.5 and ν = 3.5. The full line corresponds to chains with
identical energies for sites with the same index; the dashed line
to the case of different chains with different site energies (see
text). The dotted line indicates the conductance of three per-
fect chains with (εi = 0 and tij = −1). Averages are performed
over 1000 configurations

and

Γ
(right)
MM = i tM,M+1(gR

M+1,M+1 − gA
M+1,M+1)tM+1,M ,

(7)
and are built in terms of the hopping interactions between
leads and device and of the retarded and advanced equilib-
rium Green functions gR and gA of the left and right (iso-
lated) leads. All the quantities that appear in the form (5)
can be calculated with a real-space renormalization pro-
cedure, by recursively eliminating columns of sites [32].

3 Results

3.1 Interacting chains with identical site energies

Before considering the truly pseudorandom system com-
posed by different chains, we study here a device composed
by identical interacting chains (i.e. with identical energies
at corresponding sites) because this allows us to obtain
analytic results in terms of the conductance distribution
of the single isolated chain. For sake of simplicity, we con-
sider here the case of three coupled chains. Figure 1 re-
ports the conductance averaged over 1000 configurations,
〈g〉, as a function of the Fermi energy for three identical
interacting chains of length L = 30 whose site energies
are assigned according to the sequence (3) with W=0.5,
ν = 3.5 (full line). In comparison we report on the same
figure the conductance of three perfect chains with εi = 0
and t‖ = t⊥ = −1 (dotted line), and the average conduc-
tance of three chains of the same length (L = 30) whose
site energies are defined according to the sequence (3) but
with the counting index n shifted by 105 sites for each
chain, so to obtain three pseudorandom different chains.

We consider now the conductance distribution, in the
crossover regime, for the three identical coupled chains
introduced before. Starting from interacting chains with
the same site energies at the corresponding sites, a new
orthonormal basis can be found which allows to decouple

the system into a set of non interacting chains with the
same intrachain hopping t‖ and new diagonal elements. In
the case of three interacting chains the new basis {|φ′

nα〉}
and the corresponding new diagonal elements ε′nα have
the following expressions:

|φ′
n1〉 =

|φn1〉 +
√

2|φn2〉 + |φn3〉
2

(ε′n1 = εn1 +
√

2t⊥)

|φ′
n2〉 =

|φn1〉 −
√

2|φn2〉 + |φn3〉
2

(ε′n2 = εn2 −
√

2t⊥)

|φ′
n3〉 =

|φn1〉 − |φn3〉√
2

(ε′n3 = εn3)

where {|φnα〉}, εnα and t⊥ have been defined for the
Hamiltonian (2). If we put t‖ = −1, the conductance of
these three new non interacting chains is different from
zero in the energy intervals (−2−√

2,2−√
2), (−2, 2) and

(−2 +
√

2,2 +
√

2), respectively. The total conductance
g(E) can be written in terms of the conductances g̃(E) of
the single chains as g(E) = g̃(E)+ g̃(E+

√
2)+ g̃(E−√

2);
as a consequence, in the interval (−2+

√
2,2−√

2) the con-
tributions of the three chains are summed; in the intervals
(−2,−2+

√
2) and (2−√

2, 2) only two chains contribute
to g(E), and in the intervals (−2−√

2,−2) and (2, 2+
√

2)
just one chain contributes to g(E).

In these energy intervals the total conductance distri-
butions P (g, E) can be evaluated in terms of the distribu-
tions p(g, E) of the single chains: in the external energy in-
tervals (−2−√

2,−2) and (2, 2+
√

2) the total distribution
coincides with the distributions of the single chain with
energy translated by

√
2 and −√

2, respectively; in the in-
ternal intervals, where two and three channels are active
for the conductance of the system, P (g, E) is an appropri-
ate convolution of the contributions of the single chains.
The normalization condition adopted is ΣiP (gi) = 1. Fig-
ures 2, 3 and 4 report histograms built from P (gi) with
gi separated by ∆g=0.01; thus the total area under the
curves is 0.01. The above considerations can be summa-
rized in the following analytic expressions:

P (g, E) = p(g, E +
√

2) (−2 −
√

2 < E < −2)

P (g, E) =
∑

0<g′<g

p(g′, E)p(g − g′, E +
√

2)

(−2 < E <
√

2 − 2)

P (g, E) =
∑

0<g′<g

p(g′, E)

∑

0<g′′<g−g′
p(g′′, E+

√
2)p(g−g′−g′′, E−√

2)

(|E| < 2 −
√

2)

P (g, E) =
∑

0<g′<g

p(g′, E)p(g − g′, E −
√

2)

(2 −
√

2 < E < 2)

P (g, E) = p(g, E −
√

2) (2 < E < 2 +
√

2).

In Figure 2 we report a comparison between the results
obtained from the above expressions and the numerical
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Fig. 2. Comparison between the convolution of single chain
distributions (dashed lines) and numerical results (full lines)
for the conductance distributions of three interacting identical
chains of length L = 30. Site energies are assigned according to
the potential (3) with W = 0.5 and ν = 3.5. In (a) E = 1.99,
〈g〉 ∼ 1/2, in (b) E = 0.25, 〈g〉 ∼ 1.

results (the averages are calculated over 20000 configu-
rations) for the total conductance distributions P (g, E)
evaluated at an energy chosen in the second interval
(E = 1.99, 〈g〉 ∼ 1/2, Fig. 2a) and at an energy in the
most internal interval (E = 0.25, 〈g〉 ∼ 1, Fig. 2b). The
results found for the most external energy intervals are
practically coincident. It can be seen that also for this
simple identical three-chains system, the results in the
crossover regime are highly non trivial being very different
from standard Gaussian or log-normal distributions.

3.2 Interacting chains with different site energies

We consider here the case of coupled chains with indepen-
dent pseudorandom site energies distributions; we have
numerically evaluated the shape of conductance distribu-
tions P (g) for different values of 〈g〉 obtained for sev-
eral geometrical configurations and strength parameters
which define the pseudorandom potentials (3) and (4).
The method based on the Green’s function described in
Section 2 allows to handle easily systems composed by
more than hundred chains. We here limit ourself to the
case of three chains for comparison with the results on
random systems present in the literature [10]. The results

Fig. 3. Conductance distribution for three coupled chains with
independent site energies. (a) 〈g〉 ∼ 1/3 (full line: potential (3),
N=7, L=47, ν=2.5, W=1.0; dashed line: potential (3), N = 5,
L = 142, ν = 1.8, W = 0.5; dotted line: potential (4), N = 11,
L = 68, W = 0.3). (b) 〈g〉 ∼ 1/2 (full line: potential (3),
N=3, L=79, ν = 2.5, W = 0.5; dashed line: potential (3),
N = 5, L = 30, ν = 1.8, W=1.0; dotted line: potential (4),
N=7, L=52, W=0.2). (c) 〈g〉 ∼ 1 (full line: potential (3), N=3,
L=38, ν=2.5, W=0.5; dashed line: potential (3), N = 5, L =
57, ν = 1.8, W = 0.5; dotted line: potential (4), N = 20,
L = 39, W = 0.4). The plots are obtained for E = 0 and
2πη=1.1

presented below have been obtained from 20000 generated
configurations.

For both potentials we have found a non trivial transi-
tion of P (g) from the Gaussian to the log-normal distribu-
tion. In particular, for 〈g〉 ∼ 1/3 (see Fig. 3a) P (g) grows
steeply and beyond a pronounced peak shows a decreas-
ing behaviour up to g ∼ 1. A similar behavior is observed
also for 〈g〉 ∼ 1/2 (Fig. 3b) where the peak on the left
is less pronounced and shifted to the right in the con-
ductance scale. For 〈g〉 ∼ 1, the form of P (g) at g ∼ 1
presents a cusp shape due to the matching of the left
part of the plot with the exponentially decreasing right
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part (Fig. 3c). These calculations extend the validity of
the analytic results [33–35] found in the case of disordered
quantum wires, which predict a sharp (exponential) drop
in the distributions for g > 1. The plots reported in Fig-
ure 3 show that although the lattices considered have pseu-
dorandom distributions generated by the different laws (3)
and (4), and consequently show different localization prop-
erties, anyhow they present similar conductance distribu-
tions with shapes similar to the ones of the (correspond-
ing) random wires [10]. Moreover, from different choices
of the parameters defining the potentials (3) and (4), but
still remaining in the pseudorandom regime, we have ev-
idenced that the shapes of P (g) can be deeply different
from to the genuinely random case. As a first example we
consider the potential (3) with ν = 1.5 and choose the ge-
ometrical and potential parameters so to have 〈g〉 ∼ 1/2:
if the number of interacting chains is N = 3 and the am-
plitude W = 0.5, we can see (dotted line in the Fig. 4a)
that the peak observed in Fig. 3b at g � 0 is absent, and
the plot of P (g) shows a sharp increase as g → 0. This
behavior changes increasing W (W=1.0, dashed line) and
the number of interacting chains (N = 7, W = 1.5; full
line) still conserving the value 〈g〉 ∼ 1/2: in these cases
the shapes of P (g) are similar to those reported in Fig-
ure 3b. The curves shown in Figure 4a stress once again
that the pseudorandomness of the potential (3) is governed
by the parameter ν and that differences in localization and
transport properties with respect to the random case can
be relevant. Moreover, when the length L of the wire is
enough to simulate a one dimensional system (as in the
case N = 3 and L = 238), the distribution of P (g) as-
sumes, in the region g ∼ 0, a shape which resembles the
left branch of the typical U-shaped form for a single chain
with the same site potential parameters.

Similar results are found for the tangent potential (4):
in Figure 4b a transition from an initially decreasing be-
haviour of the shape of P (g) for N = 3, W = 0.2 (dot-
ted line), to a behaviour closer to the plots of Figure 3b
is reached for N = 5, W = 0.3 (dashed line) and for
N = 7, W = 0.3 (full line). Also in this case for large L
the conductance distribution for g ∼ 0 increases sharply;
moreover, we remark that this behavior of P (g) regards
the part of the plots around g ∼ 0, while the exponen-
tial decrease of P (g) beyond g ∼ 1 is reproduced by
the analytic and numerical results valid for the random
case [33–37].

4 Conclusions

In the crossover region between the metallic (〈g〉 � 1) and
insulating (〈g〉 � 1) regimes, we have calculated the con-
ductance distributions of multichain quantum wires de-
scribed by a tight binding scheme with site energies as-
signed according to pseudorandom sequences. We have
found that the shape of the distributions of conductances
is neither Gaussian nor log-normal; in fact they show an
initial increasing behavior for g � 0 and an exponen-
tial decrease for g > 1, if 〈g〉 � 1, while for 〈g〉 ∼ 1
a cusp shape is observed at g ∼ 1. These features have
been observed also for the case of identical interacting

Fig. 4. (a) Conductance distributions for potential (3), ν =
1.5, and 〈g〉 ∼ 1/2 (full line: N = 7, L = 19, W = 1.5; dashed
line: N = 3, L = 23, W = 1.0; dotted line: N = 3, L = 238,
W = 0.5). (b) Conductance distribution for potential (4), 〈g〉 ∼
1/2 (full line: N = 7, L = 52, W = 0.3; dashed line: N = 5,
L = 38, W = 0.3; dotted line: N = 3, L = 23, W = 0.2). The
plots are obtained for E = 0 and 2πη = 1.1.

pseudorandom chains where the conductance distribution
of the device can be obtained from the results for the sin-
gle chain. Moreover, differently from the random case, a
sharp increase of P (g) at g ∼ 0 has been evidenced both
for the cosine and and the tangent models in analogy with
the strictly one-dimensional isolated chain.

This work has been supported by the National Enterprise for
Nanoscience and Nanotechnology (NEST).
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Noziéres, D. Saint-James, J. Phys. C 5, 21 (1972)

29. P. Lloyd, J. Phys. C 2, 1717 (1969)
30. D.J. Thouless, J. Phys. C 5, 77 (1972)
31. A. Cresti, R. Farchioni, G. Grosso, G. Pastori Parravicini,

Phys. Rev. B 68, 075306 (2003)
32. See for instance G. Grosso, G. Pastori Parravicini, Solid

State Physics (Academic Press, London 2000)
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